

NASA SBIR/STTR Technologies

NASA SDIN/ST IN TECHNOLOGICS A NOVEL MICROFLUIDIC DEVICE (MED-RNA) FOR FULLY AUTOMATED NASA

EXTRACTION OF RNA FROM CELLS

PI: Shankar Sundaram/ CFD Research Corporation, Huntsville, AL CFDRC Confidential & Proprietary

Objective:

Develop a Microfluidics-based, Extraction Device (MED-RNA) for RNA isolation from cells. Starting from whole cells in a culture medium, the plastic card will lyse, filter, capture, elute and store RNA for later analysis. Loss & Contamination are reduced due to minimal handling.

- Parallel architecture with ~10 credit card size, disposable, plastic lab-cards
- Microfluidic design eliminates expensive automation, liquid handling components
- · Main components of each card include
 - » E-field lysis chamber (minimal toxic reagents)
 - » RNA capture chamber (non-magnetic beads)
 - » RNA & Waste storage chambers (sealed)

Partners:

Micronics Corp. WA

Throughput (cells)	1000-5000
Extraction Time	<15 min
Reagent Volume	~1 ml (up to 5)
RNA Yield	0.5-2.5 μg
Device Footprint	12"×12"×6"
Weight	<10 lbs

Phase I Results:

E-field Lysis (HL-60)

Brightfield

Fluorescence

Brightfield

Summary:

- Phase I: Conceptually designed and demonstrated
 - » Electric Field Driven Lysis of HL60 cells
 - » Microfluidic RNA Capture on Beads (non-magnetic)
- Proposed Phase II Workscope
 - » Component Design & Integration on Microfluidic Card
 - » Instrument Design & Testing